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Abstract
The thermopower and Nernst–Ettingshausen (NE) effect of nondegenerate
Kane semiconductors are investigated by taking into account the electron and
phonon heating and their arbitrary mutual drag. The electron spectrum is
taken in the Kane two-band form. The electric and magnetic field dependences
of the electronic and phonon parts of the thermoelectric and NE coefficients
and voltages are obtained in analytical forms. It is shown that the mutual
drag of electrons and phonons and degree of nonparabolicity of the electron
spectrum strongly influence the thermoelectric and thermomagnetic properties
of semiconductors under high electric and magnetic fields.

1. Introduction

In recent years considerable efforts have been devoted to the theoretical and experimental
investigation of thermoelectric and thermomagnetic effects in mesoscopic quantum dots,
quantum wires, heterojunction and quantum well structures as well as bulk materials [1–13].
There are also some theoretical investigations of thermoelectric and thermomagnetic effects
in semiconductors under high external electric and nonquantizing magnetic fields [14–22].
A long survey of the literature and some common misunderstandings in this field are given
in our recent papers [23, 24]. In addition, there are some review articles devoted to these
subjects [25–27]. In [25], the thermopower and Nernst–Ettingshausen (NE) effect of hot
electrons are investigated by taking into account mainly the electron–optical phonon drag and
size effects. In [26], a comprehensive review of works on two-dimensional systems until 1992 is
provided. The more recent developments in the magnetoelectric properties of semiconductors
mainly concerned with two-dimensional degenerate unheated electron or hole gases, along
with some recent results on three-dimensional systems, are given in [27].
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It is well known that the drag of electrons by phonons, or so-called thermal drag, was
predicted for the first time by Gurevich [28, 29] in 1946, and was revealed experimentally in
1953 by Frederikse [30] (see also [31, 32]). As a result of studying many aspects of these effects
both theoretically and experimentally until the early 1980s, it became a common belief that
the electron–phonon drag plays an important role in heat transfer whereas it can be neglected
in the charge transport processes [33].

Technological developments achieved at the beginning of 1980s stimulated the study of
transport phenomena in high external electric, magnetic and electromagnetic fields. Indeed,
they led to the revision of many established concepts, like the mutual and thermal drag, and to
the prediction of a substantial range of new drag mechanisms and physical effects. Between
1967 and 1970, Gurevich and Gassymov investigated the phonon heating in high external
electric and classically high and quantizing magnetic fields in semiconductors [34–38]. They
showed that the heating of phonons leads to major changes and new effects in the transport
phenomena and in the interpretation of experimental data.

In our recent paper [23] and in this work we show that if the external electric field is
aligned in the x direction and ∇T (or the external electric field gradient ∇E) is in the z
direction, then the ratio of the mutual drag term to the thermal drag term in the thermoelectric
and thermomagnetic expressions becomes γ (ϑ)/[1 − γ (ϑ)]. This ratio is smaller than unity
if γ (ϑ) < 1/2, equal to unity if γ (ϑ) = 1/2 and larger than unity if 1/2 < γ (ϑ) < 1. It
tends to infinity as γ (ϑ) → 1. Therefore, at high electric fields the mutual drag becomes more
important. Here γ (ϑ) = [νph(ϑ)/ν(ϑ)][βph(ϑ)/β(ϑ)], with ν(ϑ) and β(ϑ) the average total
collision frequencies of electrons and phonons, respectively, with scatterers.

Experimentally, the drag effect and heating of carriers and phonons are usually investigated
at low temperatures. In weak external electric fields, the electrons transfer their momentum to
the impurity ions. On the other hand, in high external electric or magnetic fields, or in strong
electromagnetic fields, the ratio of the collision frequencies of hot electrons with charged
impurities and that of hot nondegenerate electrons with phonons is νi/νph ∼ (Te/T )−3. This
ratio decreases sharply and becomes unity at some critical value of external electric field
E = Ecr. For E > Ecr the electrons and phonons are scattered from each other and, therefore,
the mutual drag becomes important.

The thermoelectric and thermomagnetic effects of semiconductors taking into account the
heating and mutual drag of electrons and phonons were studied in [22–25]. But, in [22, 24, 25]
the electron dispersion was assumed to be parabolic. The influence of the nonparabolicity of
the electron spectrum on the thermoelectric power of semiconductors under the mutual drag
conditions is investigated in [23]. In this paper, we investigate the thermomagnetic effects of
nondegenerate Kane semiconductors in high electric and nonquantizing magnetic fields. In the
calculations we take into account the heating of electrons and phonons and their mutual drag.
It is shown that the nonparabolicity leads to a significant change of dependence of NE field
upon the electron temperature Te, as well as upon the electric field E . Under the conditions of
strong mutual drag for the semiconductors with parabolic spectrum the phonon part of the NE
coefficient Qp = 0, but in the nonparabolic case Qp �= 0 and Qp is larger than the electron
part Qe, i.e. under these conditions in the semiconductors with nonparabolic spectrum the NE
field consists mainly of the phonon part.

2. Theory

The two-band Kane spectrum for electrons is assumed to be [16]

p(ε) = (2mnε)
1/2

(
1 +

ε

εg

)1/2

, (1)
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where mn is the effective electron mass at the bottom of the conduction band, εg is the bandgap
and p and ε are the electron momentum and energy, respectively.

The coupled Boltzmann transport equations for electrons and phonons are the basic
equations of the problem. We consider the quasi-elastic scattering of electrons from acoustical
phonons. In this case, the distribution functions of electrons and phonons, f (p, r) and N(q, r)
respectively, may be written as

f (p, r) = f0(ε, r) + f1(ε, r)
p
p
, (2)

N(q, r) = N0(q, r) + N1(q, r)
q
q

, (3)

where f0 (N0) and f1 (N1) are the isotropic and anisotropic parts of the electron (phonon)
distribution functions, respectively. We will assume that |f1| � f0 and |N1| � N0, i.e. the
so-called diffusion approximation applies.

If interelectronic collision frequency νee is much larger than the collision frequency of
electrons for energy transfer to lattice νε, then f0(ε, r) is the Boltzmann distribution function
with an effective electron temperature Te. Note that hereafter all temperatures are in energy
units.

We assume that in the lattice there is a thermal reservoir of short-wavelength (SW) phonons
for long-wavelength (LW) phonons interacting with electrons. The maximum momentum of
LW phonons interacting with electrons satisfies the condition qmax = 2 p̄ � T/s0. Here, qmax

is the maximum quasi-momentum of LW phonons. Under these conditions LW phonons are
heated. Hence, we assume that the isotropic part of the distribution function of phonons has
the form [22]

N0(q) =
[

exp

(
h̄ωq

Tph

)
− 1

]−1

≈ Tph

h̄ωq
. (4)

In accordance with [22], the distribution function of phonons has the form of equation (4)
only in two cases: in the first case the frequency of LW phonon–electron collisions βe is much
smaller than the frequency of LW phonon–SW phonon collisions βph. In this case Tph = T if

N(Te)

N(T )

βe

βph
≈ Te

T

βe

βph
� 1. (5)

In the second case, βe � βph, β
(ε)

b , where β
(ε)

b is the collision frequency of phonons with
crystal boundaries connected with energy transfer to outside. In this case, the temperature of
LW phonons becomes equal to the temperature of electrons (Tph = Te), and LW phonons are
in a nonequilibrium state.

The anisotropic parts of the distribution functions of electrons and phonons are obtained
by solving the coupled system of Boltzmann equations:

p

m(ε)
∇ f0(ε) − eEc

p

m(ε)

(
∂ f0(ε)

∂ε

)
− �(ε)[ĥ · f1] + ν(ε)f1

+
2πm(ε)

(2π h̄)3 p2

(
∂ f0(ε)

∂ε

) ∫ 2p

0
N1(q)W (q)h̄ωq q2 dq = 0, (6)

s0∇N0(q) + β(q)N1(q) − 4πm(ε)

(2π h̄)3
W (q)N0(q)

∫ ∞

q/2
f1 d p = 0, (7)

where e is the absolute value of the electronic charge, Ec = E + ET with ET being the
thermoelectric field, � = eH/[m(ε)c] is the cyclotron frequency, ĥ = H/H , h̄ωq = s0q
is the phonon energy, W (q) = W0qt is the square matrix element of the electron–phonon
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interaction (t = 1 for deformation and t = −1 for piezoelectric interactions) and β(q) and
ν(ε) are the total phonon and electron momentum scattering frequencies, respectively.

For the Kane semiconductors with electron spectrum given by equation (1), m(ε) and ν(ε)

have the following forms [21]:

m(ε) = mn

(
1 +

2ε

εg

)
, (8)

ν(ε) = ν0(T )

(
Tph

T

)
(
1 +

2ε

εg

)(
1 +

ε

εg

)−r(
ε

T

)−r

, (9)

where r = 3/2, 
 = 0, for the scattering of electrons from impurity ions and r = −t/2, 
 = 1,
for the scattering of electrons from acoustical phonons. When LW phonons are scattered by
SW phonons or crystal boundaries, β(q) does not depend on the type of electron spectrum and
has the form [18]

βph(q) = T 4q

4πρh̄4s4
0

, βb(q) = s0

L
, (10)

where the indices ph and b denote the scattering from SW phonons and crystal boundaries; ρ

and L are the density and minimum size of the specimen, respectively. When the LW phonons
are scattered by electrons, β(q) depends on the spectrum of electrons and for the spectrum
defined by equation (1) it is given by

βe(q) =
(

mns2
0

8πTe

)1/2 NW0

Te

(
1 +

2Te

εg

)2(
1 +

3Te

2εg

)−3/2

qt , (11)

where N is the electron concentration.
Solving the coupled equations (6) and (7) in the same way as in [22] and using the condition

Jx = Jz = 0 (E ‖ H ‖ ŷ, ∇Te,ph = 0 ‖ ẑ), the thermoelectric field ETz and transverse NE
field ETx are obtained as

ETz +
1

e
∇zζ(Te) = αe∇z Te + αph∇zTph, α(e,ph) = −σ11β

(e,ph)

11 + σ12β
(e,ph)

12

σ 2
11 + σ 2

12

, (12)

ETx = −H (Qe∇z Te + Qph∇z Tph), Q(e,ph) = 1

H

σ11β
(e,ph)

12 − σ12β
(e,ph)

11

σ 2
11 + σ 2

12

, (13)

where ζ(Te) is the chemical potential of hot electrons, α(e,ph) are the electronic (e) and phonon
(ph) parts of the thermoelectric power, Q(e,ph) are the same parts of the NE coefficient, and

σ1i =
∫ ∞

0
a(x)

[
�(x)

ν(x)

]i−1

[1 + bi(x)] dx, x = ε

Te
, (14)

β
(e)
1i = 1

e

∫ ∞

0
a(x)

[
�(x)

ν(x)

]i−1{
x − ζ(Te)

Te
+

[
1 − ζ(Te)

Te

]
bi(x)

}
dx, (15)

β
(ph)

1i = 1

e

∫ ∞

0
a(x)

[
�(x)

ν(x)

]i−1

[λ(x) + λ(1)bi(x)] dx, ϑe = Te

T
, ϑph = Tph

T
,

(16)

with

a(x) = e2

3π2h̄3

p3(x)ν(x)

m(x)[�2(x) + ν2(x)]
exp

[
ζ(Te)

Te
− x

]
, (17)

b1(x) = γ (x)ν(x)

�2(1) + ν2(1)[1 − γ0]2

m(x)

m(1)

[
ν(1)[1 − γ0] − �(x)�(1)

ν(1)

]
, (18)
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b2(x) = γ (x)ν(x)

�2(1) + ν2(1)[1 − γ0]2

m(x)

m(1)

[
ν(1)[1 − γ0] + ν(x)

m(x)

m(1)

]
, (19)

γ (x) = 3 + t

(2 p)3+t

νph(x)

ν(x)

∫ 2p

0

βe(q)

β(q)
q2+t dq, (20)

λ(x) = 3 + t

(2 p)3+t

m(x)s2
0

Tph
νph(x)

∫ 2p

0

1

β(q)
q2+t dq, (21)

where νph(x) is the scattering frequency of electrons by phonons. The coefficient λ(x)

characterizes the efficiency of thermal drag, whereas γ (x)bi(x) describes the same for mutual
drag.

Because the general analysis of equations (11)–(15) is very difficult, we will take the
energy dependence of the electron momentum in the form

p(ε) = (2mnε)
1/2

(
ε

εg

)s

. (22)

For the Kane spectrum given by equation (1), this relation corresponds to the parabolic spectrum
if Te � εg, s = 1/2, and corresponds to a strongly nonparabolic spectrum if Te � εg, s = 1.
Then, m(ε), ν(ε) and β(q) may be written in the following forms:

m(ε) = 2smn

(
ε

εg

)s

, (23)

ν(ε) = 2sν0(T ) ϑ

p

(
ε

εg

)(2s−1)(1−r)(
ε

T

)−r

, (24)

β(q) = β(T ) ϑn(s−2)
e

(
T

εg

)n(s−1/2)( s0q

T

)k

. (25)

In equation (25) the variables n and k take different values depending on the scattering
mechanism: n = 1, k = t , for the scattering of LW phonons from electrons, n = 0, k = 0, for
the scattering of LW phonons from the crystal boundaries and n = 0, k = 1, for the scattering
of LW phonons from SW phonons.

For the spectrum given by equation (21), the chemical potential of hot nondegenerate
electrons with density N is given by

ζ(Te) = Te ln

{
3π2h̄3 N

�(1 + 3s)(2mnT )3/2

(
T

εg

)−3(s−1/2)

ϑ−3s
e

}
. (26)

3. Results

We will investigate the behaviour of α and Q in weak and strong magnetic fields. Defining �̄

and ν̄ as the average values of � and ν, respectively, the weak magnetic fields satisfy �̄ � ν̄,
and the strong magnetic fields satisfy �̄ � ν̄. In weak magnetic fields, in a first approximation
on �̄/ν̄, we obtain

αe = −1

e

(
1 + C1

γ0

1 − γ0

)−1{
3 − s + 2sr − ζ(Te)

Te
+

[
1 − ζ(Te)

Te

]
C1

γ0

1 − γ0

}
, (27)

αph = −1

e

C2 + (C1 − C2)γ0

1 + (C1 − 1)γ0
λ(1), (28)



3260 M M Babaev et al

Qe = 1

ec
C6

(
1 + C1

γ0

1 − γ0

)−2

µs(Te)

{
(2 − 4s + 2sr)C3 + [(4 − 5s + 4sr)C1C3

− (2 − s + 2sr)C4]
γ0

1 − γ0
− (2 − s + 2sr)C1

γ0

(1 − γ0)2

}
, (29)

Qph = 1

ec
C6

(
1 + C1

γ0

1 − γ0

)−2

λ(1)µs(Te)

{
C5 − C2C3

+ (C4 + C1C5 − C1C3 − C2C4)
γ0

1 − γ0
+ C1(1 − C2)

γ0

(1 − γ0)2

}
, (30)

where µs(Te) is the mobility of hot electrons. For nondegenerate electrons with a spectrum
defined by equation (22), µs(Te) is given by

µs(Te) = �(3 − s + 2sr)

4s2�(1 + 3s)

e

mnν0(T )

(
T

εg

)(1−2s)(2−r)

ϑ2−4s+2sr
e ϑ−


ph . (31)

It is obvious from equations (27)–(30) that in weak magnetic fields the mutual drag essentially
influences the electronic and phonon parts of the thermoelectric power and NE coefficient.

In high magnetic fields, on the other hand, from equations (11) and (12), we obtain

αe = −1

e

[
1 + 3s − ζ(Te)

Te

]
, (32)

αph = −1

e
C7λ(1), (33)

Qe = c

eH 2

1

C2
6

[(2 − 4s + 2sr)C8 − 3sγ0C9]
1

µs(Te)
, (34)

Qph = c

eH 2

1

C3
6

[C7C8 − C6C10 + C9(C6 − C7)γ0]
1

µs(Te)
λ(1). (35)

As is seen in equations (32)–(35), in high magnetic fields the thermoelectric power does not
depend on the mutual drag coefficient γ0 explicitly. However, both Qe and Qph depend linearly
on γ0. In the above equations

C1 = �(1 + 3s + 2sr + 2st − sk)

�(3 − s + 2sr)
, C2 = �(1 + 3s + 2sr + st − sk)

�(3 − s + 2sr)
,

C3 = �(5 − 5s + 4sr)

�(3 − s + 2sr)
, C4 = �(3 − s + 4sr + 2st − sk)

�(3 − s + 2sr)
,

C5 = �(3 − s + 4sr + st − sk)

�(3 − s + 2sr)
, C6 = �(1 + 3s)

�(3 − s + 2sr)
,

C7 = �(7s − 1 + st − sk)

�(3 − s + 2sr)
, C8 = �(7s − 1 + 2sr)

�(3 − s + 2sr)
,

C9 = �(7s − 1 + 2st − sk)

�(3 − s + 2sr)
, C10 = �(11s − 3 − 2rs + st − sk)

�(3 − s + 2sr)
,

(36)

γ0 = (3 + t)23(t−k)/2

3 + 2t − k

(
mns2

0

T

)(t−k)/2(Tϑe

εg

)(s−1/2)(2r+2t−k−n+1)

× ϑr+t+(3n−3−k)/2
e ϑ1−


ph

βe(T )

β(T )

νph0(T )

ν0(T )
, (37)

λ(1) = (3 + t)22−3k/2

3 + t − k

(
mns2

0

T

)1−k/2(T ϑe

εg

)(s−1/2)(4+t−k−n)

ϑ(3n+t−k)/2
e

νph0(T )

β(T )
. (38)
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Equations (27)–(35) are valid for any value of γ0 (0 � γ0 < 1). The thermoelectric
power and thermomagnetic effects of hot carriers in the absence of mutual drag (γ0 = 0)
were studied in [20]. Therefore, here we consider only the strong mutual drag regime. This
regime occurs when electrons and phonons are mainly scattered from each other, i.e. k = t ,
n = 1, r = −t/2, 
 = 1, ϑph = ϑe, γ0 = [βe(T )/β(T )][νph0(T )/ν0(T )] → 1. Under these
conditions, equations (27)–(30) and (32)–(35) can be transformed to the following forms in
weak and high magnetic fields.

In weak magnetic fields, the electronic part of the thermoelectric power has the same form
in both parabolic and nonparabolic spectrum cases. Moreover, it depends on the degree of
nonparabolicity only through the chemical potential of electrons,

αe = −1

e

[
1 − ζ(Te)

Te

]
. (39)

However, the phonon part of the thermoelectric power strongly depends on the degree of
nonparabolicity

αph = −1

e

4
√

2(2s)2

3π3/2

(
T

ε

)3(s−1/2)
(mnT )3/2

h̄3 N
ϑ3s

e . (40)

As follows from equations (26), (27) and (39), αe depends weakly (logarithmically) on
Te. On the other hand, as follows from equations (28), (38) and (40), αph strongly increases
with increasing electron temperature: αph ∼ T 3/2

e for parabolic, and αph ∼ T 3
e for strongly

nonparabolic spectra.
The electronic and phonon parts of the NE coefficient Q in weak magnetic fields are found

as

Qe = −(2 − s − st)
µs(T )

ec
ϑ1−4s−st

e , (41)

Qph = 4
√

2(2s)2

3π3/2

[
1 − �(1 + 3s − st)

�(3 − s − st)

]
µs(T )

ec

(
T

εg

)3(s−1/2)
(mn T )3/2

h̄3 N
ϑ1−s−st

e , (42)

where µs(T ) is the mobility of cold electrons (Te = T ).
For the parabolic spectrum, Qe decreases with increasing Te for both deformation

acoustical (DA) and piezo acoustical (PA) interactions because (1 − 4s − st) < 0 for
both scattering mechanisms. However, as is seen in equation (41), Qe = 0 for a strongly
nonparabolic spectrum and DA interaction. On the other hand, Qph = 0 in both DA and PA
interactions for the parabolic spectrum,and Qph ∼ ϑ−t

e for the strongly nonparabolic spectrum.
In other words, Qph increases with increasing Te in PA and decreases in DA interactions.

In strong magnetic fields, however, we find

αe = −1

e

[
1 + 3s − ζ(Te)

Te

]
, (43)

αph = −1

e

4
√

2(2s)2

3π3/2

�(7s − 1)

�(3 − s − st)

(
T

εg

)3(s−1/2)
(mn T )3/2

h̄3 N
ϑ3s

e . (44)

From equations (32) and (39) it follows that αe increases in magnetic field as

�αe ≡ |αe(H ) − αe(0)| = 1

e
3s. (45)

The increase for the nonparabolic spectrum is much bigger than for the parabolic spectrum.
Moreover, the dependence of αph upon Te in strong magnetic fields is the same as in weak
magnetic fields.
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In strong magnetic fields, Qe and Qph are obtained as

Qe = −(7s − 2 + st)
�(7s − 1 + st)

�2(1 + 3s)

c

eH 2

1

µs(T )
ϑ4s+st−1

e , (46)

Qph = 4
√

2(2s)2

3π3/2

�(3 − s − st)

�2(1 + 3s)
[�(7s − 1 + st) − �(11s − 3 + st)]

× c

eH 2

1

µs(T )

(
T

εg

)3(s−1/2)
(mn T )3/2

h̄3 N
ϑ7s−1+st

e . (47)

In strong magnetic fields, as follows from equation (46), Qe increases with increasing
Te (for all cases satisfying (4s + st − 1) > 0). Equation (47) shows that for the parabolic
spectrum Qph = 0, whereas for the strongly nonparabolic spectrum Qph strongly increases
with increasing Te as Qph ∼ ϑ6+t

e . Therefore, Qph ∼ ϑ7
e in DA and Qph ∼ ϑ5

e in PA
interactions.

As follows from equation (26), for nondegenerate electrons(
T

εg

)3(s−1/2)
(mnT )3/2

h̄3 N
≈ exp

(
−ζ(T )

T

)
� 1, (48)

and by the comparison of equation (39) with (40), and equation (43) with (44) we see that
under strong mutual drag conditions |αph| � |αe| in both weak and strong magnetic fields. In
other words, the thermoelectric power mainly consists of the phonon part.

Since for the parabolic spectrum Qph = 0, the NE field consists of only the electronic
part. However, for the strongly nonparabolic spectrum, from equations (41), (42), and (46),
(47), we have |Qph| � |Qe|, i.e. the NE field mainly consists of the phonon part.

If γ0 � 1, the E dependence of ϑe (when ϑe = ϑph � 1) is given by equation (37) of our
recent paper [23] as

ϑe ∼ E2/(8s−1−2rs+
). (49)

Therefore, we find

ϑe ∼ E2/(3−r+
) for s = 1/2
and ϑe ∼ E2/(3−2r+
) for s = 1.

(50)

Under the strong mutual drag conditions (ϑe = ϑph and γ0 → 1), the effective electron
temperature is determined by the energy balance equation

σ11(ϑe)E2 = Wpp(ϑe), (51)

where Wpp(ϑe) is the power transferred by LW phonons to the thermal reservoir of SW phonons.
We now consider the following cases:

(i)
βph + βb

βe
� νi

νph
, (ii) βph � βb,

βph

βe
� νi

νph
,

(iii) βph � βb,
βb

βe
� νi

νph
.

(52)

The results obtained for ϑph = ϑe � 1 are given in table 1. As is seen in table 1, the
nonparabolicity of the electron spectrum strongly changes the E dependence of electron
temperature. Using these results one can easily obtain the dependence of the thermoelectric
power and NE coefficient upon the heating electric field in all cases considered. As follows
from equations (27), (39) and (43), αe weakly (logarithmically) depends on E for all cases
given in equation (52).

The E dependence of αph, Qph and Qe in the cases given in equation (52) are presented in
table 2. In using this table one must keep in mind that for the parabolic spectrum Qph = 0 and
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Table 1. Dependences of ϑe on E in the limit γ0 → 1.

Case s = 1
2 s = 1

i ϑe ∼ E4/3 ϑe ∼ E1/2

ii ϑe ∼ E1/3 ϑe ∼ E1/5

iii ϑe ∼ E4/11 ϑe ∼ E2/9

Table 2. Dependences of αph, Qe and Qph on E in DA and PA scattering mechanisms for the
parabolic spectrum of electrons (s = 1/2) under the strong mutual drag conditions. The results for
the PA scattering mechanism are given in brackets.

Case (i) Case (ii) Case (iii)

αph ∼E2 ∼E1/2 ∼E6/11

Qe(�̄ � ν̄) ∼E−2 [E−2/3] ∼E−1/2 [E−1/6] ∼E−6/11 [E−2/11]
Qe(�̄ � ν̄) ∼E2 [E2/3] ∼E1/2 [E1/6] ∼E6/11 [E2/11]
Qph(�̄ � ν̄) ≈0 [∼E4/3] ≈0 [∼E1/3] ≈0 [∼E4/11]
Qph(�̄ � ν̄) ∼E4 [E8/3] ∼E [E2/3] ∼E12/11 [E8/11]

Table 3. The same as table 2 but for the strongly nonparabolic spectrum of electrons (s = 1).

Case (i) Case (ii) Case (iii)

αph ∼E3/2 ∼E3/5 ∼E2/3

Qe(�̄ � ν̄) ∼E−2 [E−1] ∼E−4/5 [E−2/5] ∼E−8/9 [E−4/9]
Qe(�̄ � ν̄) ∼E2 [E] ∼E4/5 [E2/5] ∼E8/9 [E4/9]
Qph(�̄ � ν̄) ∼E−1/2 [E1/2] ∼E−1/5 [E1/5] ∼E−2/9 [E2/9]
Qph(�̄ � ν̄) ∼E7/2 [E5/2] ∼E7/5 [E] ∼E14/9 [E10/9]

total NE coefficient Q = Qe + Qph = Qe. On the other hand, for the strongly nonparabolic
spectrum |Qph| � |Qe| and Q ≈ Qph. For example, under strong magnetic fields if the DA
interaction is taking place and case (i) is satisfied, then Q ∼ E2 for the parabolic and Q ∼ E7/2

for the strongly nonparabolic spectra.
Under the strong mutual drag conditions, |αph| � |αe| and total thermoelectric power

α = αe + αph ≈ αph for both parabolic and nonparabolic spectra. For example, if case (i) is
satisfied, then α ∼ E2 for the parabolic, and α ∼ E3/2 for the strongly nonparabolic spectra.
In tables 2 and 3 we observe that for all cases the nonparabolicity of the spectrum essentially
changes the E dependence of α and Q.

In this paper, we investigate the E dependence of the phonon parts of the NE coefficient
Qph and NE voltage Uph in weak and high magnetic fields for different scattering mechanisms.
In our analysis, we consider weak and strong mutual drag cases (γ0 � 1 and γ0 → 1,
respectively) separately.

3.1. The γ0 � 1 limit

In this limit we will investigate the phonon parts of the NE effects under weak and high
magnetic fields in detail.

3.1.1. Weak magnetic field. The NE voltage is defined as Uph ∼ Qphϑe, where ϑe is given by
equation (49). Equations (30), (31) and (38) yield Qph ∼ ϑ

s(t−k+2r−n)+2n−

e . Therefore, in weak

magnetic fields Qph and Uph take the following forms for the given scattering mechanisms.
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(1) Electrons are scattered by DA phonons and phonons by electrons. The coupled system
formed by the mutual drag is scattered by the crystal boundaries. t = 1, r = −1/2, 
 = 1,
k = 0, n = 0 (strong mutual drag):

Qph ∼ E−4/9, Uph ∼ E0 for s = 1/2,

Qph ∼ E−2/9, Uph ∼ E0 for s = 1.
(53)

(2) Electrons are scattered by PA phonons and phonons by electrons. The coupled system
formed by the mutual drag is scattered by the crystal boundaries. t = −1, r = 1/2, 
 = 1,
k = 0, n = 0 (strong mutual drag):

Qph ∼ E−4/9, Uph ∼ E0 for s = 1/2,

Qph ∼ E−2/9, Uph ∼ E0 for s = 1.

(3) Electrons transfer their momentum to charged impurities and energy to DA phonons,
and phonons are scattered from the crystal boundaries. t = 1, r = 3/2, 
 = 0, k = 0, n = 0
(thermal drag):

Qph ∼ E8/3, Uph ∼ E4 for s = 1/2,

Qph ∼ E2, Uph ∼ E5/2 for s = 1.
(54)

(4) Electrons transfer their momentum to charged impurities and energy to PA phonons,
and phonons are scattered from the crystal boundaries. t = −1, r = 3/2, 
 = 0, k = 0, n = 0
(thermal drag):

Qph ∼ E4/3, Uph ∼ E8/3 for s = 1/2,

Qph ∼ E, Uph ∼ E3/2 for s = 1.
(55)

(5) Electrons transfer their momentum to charged impurities and energy to DA phonons,
and phonons are scattered by electrons. t = 1, r = 3/2, 
 = 0, k = 1, n = 1 (thermal drag):

Qph ≈ 0, Uph ≈ 0 for s = 1/2,

Qph ∼ E2, Uph ∼ E5/2 for s = 1.
(56)

(6) Electrons transfer their momentum to charged impurities and energy to PA phonons,
and phonons are scattered by electrons. t = −1, r = 3/2, 
 = 0, k = −1, n = 1 (thermal
drag):

Qph ≈ 0, Uph ≈ 0 for s = 1/2,

Qph ∼ E2, Uph ∼ E5/2 for s = 1.
(57)

3.1.2. High magnetic field. By using equations (30) and (35), Qph is obtained as

Qph ∼ ϑ s(8−2r+t−k−n)+2n−4+

e . (58)

(1) Electrons are scattered by DA phonons and phonons by electrons. The coupled system
formed by the mutual drag is scattered by the crystal boundaries. t = 1, r = −1/2, 
 = 1,
k = 0, n = 0 (strong mutual drag):

Qph ∼ E8/9, Uph ∼ E4/3 for s = 1/2,

Qph ∼ E14/9, Uph ∼ E16/9 for s = 1.
(59)

(2) Electrons are scattered by PA phonons and phonons by electrons. The coupled system
formed by the mutual drag is scattered by the crystal boundaries. t = −1, r = 1/2, 
 = 1,
k = 0, n = 0 (strong mutual drag):

Qph ∼ E0, Uph ∼ E4/7 for s = 1/2,

Qph ∼ E6/7, Uph ∼ E8/7 for s = 1.
(60)
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Table 4. Dependences of Ue and Uph on E in DA and PA scattering mechanisms for the parabolic
spectrum of electrons (s = 1/2) under the strong mutual drag conditions. The results for the PA
scattering mechanism are given in brackets.

Case (i) Case (ii) Case (iii)

Ue(�̄ � ν̄) ∼E−2/3 [E2/3] ∼E−1/6 [E1/6] ∼E−2/11 [E2/11]
Ue(�̄ � ν̄) ∼E10/3 [E2] ∼E5/6 [E1/2] ∼E10/11 [E6/11]
Uph(�̄ � ν̄) ≈0 [∼E8/3] ≈0 [∼E2/3] ≈0 [∼E8/11]
Uph(�̄ � ν̄) ∼E16/3 [E4] ∼E4/3 [E] ∼E16/11 [E12/11]

(3) Electrons transfer their momentum to charged impurities and energy to DA phonons,
and phonons are scattered from the crystal boundaries. t = 1, r = 3/2, 
 = 0, k = 0, n = 0
(thermal drag):

Qph ∼ E−4/3, Uph ∼ E0 for s = 1/2,

Qph ∼ E, Uph ∼ E3/2 for s = 1.
(61)

(4) Electrons transfer their momentum to charged impurities and energy to PA phonons,
and phonons are scattered from the crystal boundaries. t = −1, r = 3/2, 
 = 0, k = 0, n = 0
(thermal drag):

Qph ∼ E−8/3, Uph ∼ E−4/3 for s = 1/2,

Qph ∼ E0, Uph ∼ E1/2 for s = 1.
(62)

(5) Electrons transfer their momentum to charged impurities and energy to DA phonons,
and phonons are scattered by electrons. t = 1, r = 3/2, 
 = 0, k = 1, n = 1 (thermal drag):

Qph ∼ E0, Uph ∼ E0 for s = 1/2,

Qph ∼ E, Uph ∼ E3/2 for s = 1.
(63)

(6) Electrons transfer their momentum to charged impurities and energy to PA phonons,
and phonons are scattered by electrons. t = −1, r = 3/2, 
 = 0, k = −1, n = 1 (thermal
drag):

Qph ≈ 0, Uph ≈ 0 for s = 1/2,

Qph ∼ E, Uph ∼ E3/2 for s = 1.
(64)

3.2. The γ0 → 1 limit

In this limit, electrons and phonons are mainly scattered from each other; therefore, we have
strong mutual drag. If electrons are scattered by DA phonons, and phonons by electrons, we
must take t = 1, r = −1/2, 
 = 1, k = 1, n = 1. On the other hand, if electrons are scattered
by PA phonons and phonons by electrons we must take t = −1, r = 1/2, 
 = 1, k = −1,
n = 1.

The dependences of αph, Qe and Qph upon E in the present limit for the parabolic spectrum
is given in table 2 and for the strongly nonparabolic spectrum in table 3. By using the results
given in tables 1–3, one can easily calculate the NE potentials Ue ∼ Qeϑe and Uph ∼ Qphϑe.
The results for Ue and Uph are given in tables 4 and 5.

4. Conclusion

In this paper, we studied the thermomagnetic effects of nondegenerate Kane semiconductors
under the conditions of mutual electron–phonon drag in high electric and nonquantizing
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Table 5. The same as table 4 but for the strongly nonparabolic spectrum of electrons (s = 1).

Case (i) Case (ii) Case (iii)

Ue(�̄ � ν̄) ∼E−3/2 [E−1/2] ∼E−3/5 [E−1/5] ∼E−2/3 [E−2/9]
Ue(�̄ � ν̄) ∼E5/2 [E3/2] ∼E1 [E3/5] ∼E10/9 [E2/3]
Uph(�̄ � ν̄) ∼E0 [E1] ∼E0 [E2/5] ∼E0 [E4/9]
Uph(�̄ � ν̄) ∼E4 [E3] ∼E8/5 [E6/5] ∼E16/9 [E4/3]

magnetic fields. We have found that the nonparabolicity of the electron spectrum and the
mutual drag leads to significant changes in the thermoelectric and thermomagnetic effects of
hot carriers.

Under the conditions of strong mutual drag for the semiconductor with parabolic spectrum
the phonon part of the NE coefficient Qph = 0 and the total NE coefficient Q = Qe + Qph =
Qe [22]. We show that in these conditions for the nonparabolic spectrum Qph �= 0 and
Qph � Qe, i.e. in the nonparabolic case the NE field mainly consists of the phonon part
and is much higher than the NE field in the parabolic case. In high magnetic fields for
the semiconductor with strongly nonparabolic spectrum, the NE coefficient Q ≈ Qph sharply
increases with increasing electron temperature as Q ∼ ϑ7

e in DA and Q ∼ ϑ5
e in PA interactions

of electrons with phonons.
Under the strong mutual drag conditions, |αph| � |αe| both in weak and strong magnetic

fields, i.e. the thermoelectric power mainly consists of the phonon part (α ≈ αph) and essentially

depends on the degree of nonparabolicity: α ∼ ϑ
3/2
e for the parabolic, and α ∼ ϑ3

e for the
strongly nonparabolic spectra.

As is seen in table 1, the nonparabolicity of the electron spectrum strongly changes
the E dependence of electron temperature. By using these relations the E dependence of
thermoelectric power and NE coefficients are obtained and presented in tables 2 and 3. In
constructing these tables we used the fact that for the parabolic spectrum Qph = 0 and the
total NE coefficient Q = Qe + Qph = Qe, whereas for the strongly nonparabolic spectrum
case |Qph| � |Qe| and Q = Qph.

In summary, we have demonstrated that the mutual drag of electrons and phonons, and
the degree of nonparabolicity of the electron spectrum strongly influences the thermoelectric
and thermomagnetic properties of semiconductors.
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